Theory and Numerical Analysis of Volterra Functional Equations
نویسنده
چکیده
The qualitative and quantitative analyses of numerical methods delay differential equations (DDEs) are now quite well understood, as reflected in the recent monograph by Bellen and Zennaro (2003). This is in remarkable contrast to the situation in the numerical analysis of more general Volterra functional equations in which delays occur in connection with memory terms described by Volterra integral operators. The complexity of the convergence and asymptotic stability analysis has its roots in a number of aspects not present in DDEs: the problems have distributed delays; kernels in the Volterra operators may be weakly singular; a second discretisation step (approximation of the memory term by feasible quadrature processes) will in general be necessary before solution approximations can be computed. These notes are intended to provide an introduction to functional integral and integrodifferential equations of Volterra type and their numerical analysis, focusing on collocation methods. They contain background material (and references), and also describe the “state of the art” in the numerical analysis. In addition, they reveal that we still have a long way to go before we reach a level of insight into the numerical analysis of Volterra functional equations comparable to the one that has been achieved for delay differential equations.
منابع مشابه
Superconvergence analysis of multistep collocation method for delay functional integral equations
In this paper, we will present a review of the multistep collocation method for Delay Volterra Integral Equations (DVIEs) from [1] and then, we study the superconvergence analysis of the multistep collocation method for DVIEs. Some numerical examples are given to confirm our theoretical results.
متن کاملA computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations
A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...
متن کاملConvergence of Numerical Method For the Solution of Nonlinear Delay Volterra Integral Equations
In this paper, Solvability nonlinear Volterra integral equations with general vanishing delays is stated. So far sinc methods for approximating the solutions of Volterra integral equations have received considerable attention mainly due to their high accuracy. These approximations converge rapidly to the exact solutions as number sinc points increases. Here the numerical solution of nonlinear...
متن کاملConvergence analysis of product integration method for nonlinear weakly singular Volterra-Fredholm integral equations
In this paper, we studied the numerical solution of nonlinear weakly singular Volterra-Fredholm integral equations by using the product integration method. Also, we shall study the convergence behavior of a fully discrete version of a product integration method for numerical solution of the nonlinear Volterra-Fredholm integral equations. The reliability and efficiency of the proposed scheme are...
متن کاملA meshless method for optimal control problem of Volterra-Fredholm integral equations using multiquadratic radial basis functions
In this paper, a numerical method is proposed for solving optimal control problem of Volterra integral equations using radial basis functions (RBFs) for approximating unknown function. Actually, the method is based on interpolation by radial basis functions including multiquadrics (MQs), to determine the control vector and the corresponding state vector in linear dynamic system while minimizing...
متن کامل